Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
J Proteome Res ; 23(5): 1768-1778, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38580319

RESUMO

Biofluids contain molecules in circulation and from nearby organs that can be indicative of disease states. Characterizing the proteome of biofluids with DIA-MS is an emerging area of interest for biomarker discovery; yet, there is limited consensus on DIA-MS data analysis approaches for analyzing large numbers of biofluids. To evaluate various DIA-MS workflows, we collected urine from a clinically heterogeneous cohort of prostate cancer patients and acquired data in DDA and DIA scan modes. We then searched the DIA data against urine spectral libraries generated using common library generation approaches or a library-free method. We show that DIA-MS doubles the sample throughput compared to standard DDA-MS with minimal losses to peptide detection. We further demonstrate that using a sample-specific spectral library generated from individual urines maximizes peptide detection compared to a library-free approach, a pan-human library, or libraries generated from pooled, fractionated urines. Adding urine subproteomes, such as the urinary extracellular vesicular proteome, to the urine spectral library further improves the detection of prostate proteins in unfractionated urine. Altogether, we present an optimized DIA-MS workflow and provide several high-quality, comprehensive prostate cancer urine spectral libraries that can streamline future biomarker discovery studies of prostate cancer using DIA-MS.


Assuntos
Neoplasias da Próstata , Proteoma , Proteômica , Humanos , Masculino , Neoplasias da Próstata/urina , Neoplasias da Próstata/diagnóstico , Proteoma/análise , Proteômica/métodos , Próstata/metabolismo , Próstata/patologia , Biblioteca de Peptídeos , Biomarcadores Tumorais/urina , Espectrometria de Massas em Tandem/métodos , Fluxo de Trabalho
2.
Cell Rep Methods ; 4(4): 100741, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38569541

RESUMO

Deep proteomic profiling of rare cell populations has been constrained by sample input requirements. Here, we present DROPPS (droplet-based one-pot preparation for proteomic samples), an accessible low-input platform that generates high-fidelity proteomic profiles of 100-2,500 cells. By applying DROPPS within the mammary epithelium, we elucidated the connection between mitochondrial activity and clonogenicity, identifying CD36 as a marker of progenitor capacity in the basal cell compartment. We anticipate that DROPPS will accelerate biology-driven proteomic research for a multitude of rare cell populations.


Assuntos
Biomarcadores , Antígenos CD36 , Glândulas Mamárias Animais , Proteômica , Células-Tronco , Proteômica/métodos , Antígenos CD36/metabolismo , Animais , Feminino , Células-Tronco/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Biomarcadores/metabolismo , Biomarcadores/análise , Epitélio/metabolismo , Camundongos , Humanos , Mitocôndrias/metabolismo
3.
Heliyon ; 10(8): e29284, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38655325

RESUMO

The process of drying agricultural products for food preservation is a difficult task that requires a significant amount of energy. The increasing cost and depletion of fossil fuels have led to the development of a food dryer that utilizes renewable energy sources. This research paper proposes the design and performance evaluation of an indirectly forced convection desiccant integrated solar dryer (IFCDISD) at the Solar Energy Research Lab at USPCAS-E, NUST Pakistan. Tomatoes were chosen as the test product due to their importance and widespread consumption. The drying process involves slicing the tomatoes and placing them on the IFCDISD rack, where a desiccant called calcium chloride (CaCl2) is integrated into the dryer. The experiments were conducted during both sunshine (SS) hours and Off-sunshine (OSS) hours. The IFCDISD operates using sunlight during SS hours and utilizes the absorbed heat of CaCl2 in OSS hours via a forced DC brushless fan powered by battery charged thro solar panel. The tomatoes were weighed before and after each drying mode, and the moisture removal was calculated. The results show that the dryer efficiency was 50.14 % on day 1, 66 % on day 2, and an overall efficiency of 58.07 %. The moisture content removal was 42.858 % on day 1, 22.9979 % on day 2, and an overall moisture content removal of 58.07 %. Moreover, the payback period is 5.1396 and the carbon mitigation was recorded as 2.0335, and the earned carbon credit was recorded as 11559.6.

4.
Sci Rep ; 14(1): 9663, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670984

RESUMO

It is mentioned that understanding linear and non-linear thermo-elasticity systems is important for understanding temperature, elasticity, stresses, and thermal conductivity. One of the most crucial aspects of the current research is the solution to these systems. The fractional form of several thermo-elastic systems is explored, and elegant solutions are provided. The solutions of fractional and integer thermo-elastic systems are further discussed using tables and diagrams. The closed contact between the LRPSM and exact solutions is displayed in the graphs. Plotting fractional problem solutions demonstrates their convergence towards integer-order problem solutions for suitable modeling. The tables confirm that greater precision is rapidly attained as the terms of the derived series solution increase. The faster convergence and stability of the suggested method support its modification for other fractional non-linear complex systems in nature.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38632199

RESUMO

Aluminum (Al) toxicity poses a significant challenge to agricultural productivity, particularly in acidic soils. The banana crop, predominantly cultivated in tropical and subtropical climates, often grapples with low pH and Al toxicity. This study seeks to explore the differential responses of two banana genotypes with varying Al tolerance (Baodao and Baxi) to Al exposure (100 and 500 µM) for 24 h. Microscopic analysis uncovered distinctive structural modifications in root cells, with Baodao displaying more severe alterations in response to Al stress. There was higher superoxide (O2-.) and hydrogen peroxide (H2O2) production and lipid peroxidation in Baodao indicating enhanced oxidative stress and membrane damage. Al accumulation in root tips was higher in Baxi than Baodao, while the roots of Baodao had a higher accumulation of callose. Nutrient content analysis revealed alterations in ion levels, highlighting the impact of Al exposure on nutrient uptake and homeostasis. In summary, Al differentially affects callose deposition, which, in turn, leads to Al uptake and nutrient homeostasis alteration in two contrasting banana genotypes. This intricate interplay is a key factor in understanding plant responses to aluminum toxicity and can inform strategies for crop improvement and soil management in aluminum-stressed environments.

6.
Sci Rep ; 14(1): 9627, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671024

RESUMO

In this study, an accurate analytical solution is presented for fuzzy FPDEs. It is done by using a novel method called the Laplace-residual power series (LRPSM) to build a series solution to the given problems. The fundamental instruments of the employed method are the Laplace transform, fractional Laurent, and fractional power series. Using the idea of a limit at infinity, we provide a series solution to a fuzzy FPDE with quick convergence and simple coefficient finding. We analyze three cases to obtain approximate and exact solutions to show the effectiveness and reliability of the Laplace- residual power series approach. To demonstrate the accuracy of the suggested procedure, we compare the findings to the real data.

7.
Sci Rep ; 14(1): 7333, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538706

RESUMO

Application of machine learning in plant breeding is a recent concept, that has to be optimized for precise utilization in the breeding program of high yielding crop plants. Identification and efficient utilization of heterotic grouping pattern aided with machine learning approaches is of utmost importance in hybrid cultivar breeding as it can save time and resources required to breed a new plant hybrid/variety. In the present study, 109 genotypes of sunflower were investigated at morphological, biochemical (SDS-PAGE) and molecular levels (through micro-satellites (SSR) markers) for heterotic grouping. All the three datasets were combined, scaled, and subjected to unsupervised machine learning algorithms, i.e., Hierarchical clustering, K-means clustering and hybrid clustering algorithm (hierarchical + K-means) for assessment of efficiency and resolution power of these algorithms in practical plant breeding for heterotic grouping identification. Following the application of machine learning unsupervised clustering approach, two major groups were identified in the studied sunflower germplasm, and further classification revealed six smaller classes in each major group through hierarchical and hybrid clustering approach. Due to high resolution, obtained in hierarchical clustering, classification achieved through this algorithm was further used for selection of potential parents. One genotype from each smaller group was selected based on the maximum seed yield potential and hybridized in a line × tester mating design producing 36 F1 cross combinations. These F1s along with their parents were studied in open field conditions for validating the efficacy of identified heterotic groups in sunflowers genetic material under study. Data for 11 agronomic and qualitative traits were recorded. These 36 F1 combinations were tested for their combining ability (General/Specific), heterosis, genotypic and phenotypic correlation and path analysis. Results suggested that F1 hybrids performed better for all the traits under investigation than their respective parents. Findings of the study validated the use of machine learning approaches in practical plant breeding; however, more accurate and robust clustering algorithms need to be developed to handle the data noisiness of open field experiments.


Assuntos
Asteraceae , Helianthus , Vigor Híbrido , Hibridização Genética , Helianthus/genética , Genótipo , Melhoramento Vegetal , Aprendizado de Máquina
8.
Acta Neuropathol Commun ; 12(1): 39, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454495

RESUMO

Chordomas are clinically aggressive tumors with a high rate of disease progression despite maximal therapy. Given the limited therapeutic options available, there remains an urgent need for the development of novel therapies to improve clinical outcomes. Cell surface proteins are attractive therapeutic targets yet are challenging to profile with common methods. Four chordoma cell lines were analyzed by quantitative proteomics using a differential ultracentrifugation organellar fractionation approach. A subtractive proteomics strategy was applied to select proteins that are plasma membrane enriched. Systematic data integration prioritized PLA2R1 (secretory phospholipase A2 receptor-PLA2R1) as a chordoma-enriched surface protein. The expression profile of PLA2R1 was validated across chordoma cell lines, patient surgical tissue samples, and normal tissue lysates via immunoblotting. PLA2R1 expression was further validated by immunohistochemical analysis in a richly annotated cohort of 25-patient tissues. Immunohistochemistry analysis revealed that elevated expression of PLA2R1 is correlated with poor prognosis. Using siRNA- and CRISPR/Cas9-mediated knockdown of PLA2R1, we demonstrated significant inhibition of 2D, 3D and in vivo chordoma growth. PLA2R1 depletion resulted in cell cycle defects and metabolic rewiring via the MAPK signaling pathway, suggesting that PLA2R1 plays an essential role in chordoma biology. We have characterized the proteome of four chordoma cell lines and uncovered PLA2R1 as a novel cell-surface protein required for chordoma cell survival and association with patient outcome.


Assuntos
Cordoma , Humanos , Cordoma/genética , Cordoma/metabolismo , Proteômica , Membrana Celular/metabolismo , Proteínas de Membrana , Organelas/metabolismo , Organelas/patologia , Receptores da Fosfolipase A2/metabolismo
10.
Mol Cell ; 84(7): 1377-1391.e6, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38423013

RESUMO

Micronuclei (MN) are induced by various genotoxic stressors and amass nuclear- and cytoplasmic-resident proteins, priming the cell for MN-driven signaling cascades. Here, we measured the proteome of micronuclear, cytoplasmic, and nuclear fractions from human cells exposed to a panel of six genotoxins, comprehensively profiling their MN protein landscape. We find that MN assemble a proteome distinct from both surrounding cytoplasm and parental nuclei, depleted of spliceosome and DNA damage repair components while enriched for a subset of the replisome. We show that the depletion of splicing machinery within transcriptionally active MN contributes to intra-MN DNA damage, a known precursor to chromothripsis. The presence of transcription machinery in MN is stress-dependent, causing a contextual induction of MN DNA damage through spliceosome deficiency. This dataset represents a unique resource detailing the global proteome of MN, guiding mechanistic studies of MN generation and MN-associated outcomes of genotoxic stress.


Assuntos
Cromotripsia , Proteoma , Humanos , Proteoma/genética , Proteoma/metabolismo , Proteômica , Núcleo Celular/genética , Núcleo Celular/metabolismo , Dano ao DNA/genética
11.
Environ Sci Pollut Res Int ; 31(9): 14103-14122, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38270760

RESUMO

The utilization of nanobiochar in agricultural practices has garnered substantial interest owing to its promising potential. Its nano-size particles possess an enhanced ability to infiltrate plant cells, potentially instigating biochemical and physiological responses that augment stress tolerance. In our study, we aimed to assess the impact and extent of exogenously applied nanobiochar on the growth dynamics and antioxidative responses in Spinacia oleracea L. (spinach) plants subjected to salt stress (50 mM NaCl) and drought stress (maintained at 60% field capacity) compared with respective controls (0 mM NaCl and 100% field capacity). Following a 15-day exposure to stress conditions, nanobiochar solution (at concentrations of 0, 1, 3, and 5% w/v) was sprayed on spinach plants at weekly intervals (at 14, 21, and 28 days after sowing). The foliar application of nanobiochar markedly improved biomass, net assimilation rate, leaf area, and various other growth parameters under drought and salinity stress conditions. Notably, the application of 3% nanobiochar caused the most significant enhancement in growth traits, photosynthetic pigments, and nutrient content, indicating its efficiency in directly supplying nutrients to the foliage. Furthermore, under drought stress conditions, the application of 3% nanobiochar elicited a notable 62% increase in catalase activity, a two-fold rise in peroxidase activity, and a 128% increase in superoxide dismutase activity compared to the control (without nanobiochar). Additionally, nanobiochar application enhanced membrane stability, evidenced by reduced lipid peroxidation and electrolyte leakage. The foliar application of 3% nanobiochar was found as a promising strategy to significantly enhance spinach growth parameters, nutrient assimilation, and antioxidative defense mechanisms, particularly under conditions of drought and salinity stress.


Assuntos
Carvão Vegetal , Secas , Spinacia oleracea , Salinidade , Cloreto de Sódio , Antioxidantes
12.
J Proteome Res ; 23(2): 749-759, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38266179

RESUMO

High-grade serous ovarian carcinoma (HGSC) is the most prevalent subtype of epithelial ovarian cancer. The combination of a high rate of recurrence and novel therapies in HGSC necessitates an accurate assessment of the disease. Currently, HGSC response to treatment and recurrence are monitored via immunoassay of serum levels of the glycoprotein CA125. CA125 levels predictably rise at HGSC recurrence; however, it is likely that the disease is progressing even before it is detectable through CA125. This may explain why treating solely based on CA125 increase has not been associated with improved outcomes. Thus, additional biomarkers that monitor HGSC progression and cancer recurrence are needed. For this purpose, we developed a scheduled parallel reaction monitoring mass spectrometry (PRM-MS) assay for the quantification of four previously identified HGSC-derived glycopeptides (from proteins FGL2, LGALS3BP, LTBP1, and TIMP1). We applied the assay to quantify their longitudinal expression profiles in 212 serum samples taken from 34 HGSC patients during disease progression. Analyses revealed that LTBP1 best-mirrored tumor load, dropping as a result of cancer treatment in 31 out of 34 patients and rising at HGSC recurrence in 28 patients. Additionally, LTBP1 rose earlier during remission than CA125 in 11 out of 25 platinum-sensitive patients with an average lead time of 116.4 days, making LTBP1 a promising candidate for monitoring of HGSC recurrence.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/metabolismo , Biomarcadores Tumorais , Cistadenocarcinoma Seroso/patologia , Recidiva Local de Neoplasia , Glicoproteínas , Espectrometria de Massas , Fibrinogênio , Proteínas de Ligação a TGF-beta Latente
13.
Plants (Basel) ; 13(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38256720

RESUMO

Rapid urban expansion and a booming population are placing immense pressure on our agricultural systems, leading to detrimental impacts on soil fertility and overall health. Due to the extensive use of agrochemicals in agriculture, the necessity to meet the expanding demand for food has also resulted in unsustainable farming practices. Around the world, biochar, a multipurpose carbonaceous material, is being used to concurrently solve issues with enhancing soil fertility, plant growth, and development under both normal and stressful circumstances. It improves water retention, fosters nutrient absorption, and promotes microbial activity, creating a fertile environment that supports sustainable and resilient agriculture. Additionally, biochar acts as a carbon sink, contributing to long-term carbon sequestration and mitigating climate change impacts. The major benefit of biochar is that it helps the adsorption process with its highly porous structures and different functional groups. Understanding the elements involved in biochar formation that determine its characteristics and adsorptive capacity is necessary to assure the viability of biochar in terms of plant productivity and soil health, particularly biological activity in soil. This paper focuses on the development, composition, and effects of biochar on soil fertility and health, and crop productivity.

14.
Heliyon ; 9(11): e21551, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38053879

RESUMO

The research work identifies and priorities the factors affecting agri-logistics causing wastage of the agricultural products during its transit from farm to the point of consumption so that logistics mechanism for agriculture sector in India can be optimised by removing the barriers leading to hindrances in safe, timely, economical and good condition delivery of the agri consignment. The field of agri-logistics remains at the crucial nexus of the agricultural and logistics industries and has the potential to improve the nation's system for distributing food. The post-harvest wastage in India has been massive due to inefficiencies agri-logistics management and faulty food distribution mechanism. It is an exploratory study that along the factors (barriers) identified and synthesised from literature review of the concerned area. The identified barriers were reduced and finalised in consultation with the experts using Delphi technique. With the help of ISM questionnaire, a model has been developed reflecting the drivers and dependents out of the barriers considered for the study. The result is further validated through MICMAC analysis. The result of the study has come up with the interpretive structure model depicting hierarchy of the barriers pushing from down to top causing agriculture wastage. The paper holds originality in the sense that it comes up with fresh perspectives on the factors causing hindrances in the efficient logistics operation that certainly helps to minimise wastage of the agri-products in the post-harvest stages. The identification of the barriers and their detriments to the other factors will help to take essential steps on how to overcome the issues and optimize the agri-logistics that would minimise the agri-wastage in India and prove to be a game changer to the agri-trade sector.

15.
Front Plant Sci ; 14: 1263813, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38126015

RESUMO

Introduction: Nanoparticles play a vital role in environmental remediation on a global scale. In recent years, there has been an increasing demand to utilize nanoparticles in wastewater treatment due to their remarkable physiochemical properties. Methods: In the current study, manganese oxide nanoparticles (MnO-NPs) were synthesized from the Bacillus flexus strain and characterized by UV/Vis spectroscopy, X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. Results: The objective of this study was to evaluate the potential of biosynthesized MnO-NPs to treat wastewater. Results showed the photocatalytic degradation and adsorption potential of MnO-NPs for chemical oxygen demand, sulfate, and phosphate were 79%, 64%, and 64.5%, respectively, depicting the potential of MnO-NPs to effectively reduce pollutants in wastewater. The treated wastewater was further utilized for the cultivation of wheat seedlings through a pot experiment. It was observed that the application of treated wastewater showed a significant increase in growth, physiological, and antioxidant attributes. However, the application of treated wastewater led to a significant decrease in oxidative stress by 40%. Discussion: It can be concluded that the application of MnO-NPs is a promising choice to treat wastewater as it has the potential to enhance the growth, physiological, and antioxidant activities of wheat seedlings.

16.
Cureus ; 15(10): e47475, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38021787

RESUMO

Chronic inflammatory demyelinating polyneuropathy (CIDP) is an uncommon immune-mediated neuropathy with an often unknown etiology. Patients typically present with gradual muscle weakness, sensory loss, and reduced deep tendon reflexes. Diagnostic challenges persist due to the absence of specific lab findings and definitive criteria. Treatment commonly involves glucocorticoids, IVIG, or plasma exchange, with varied long-term outcomes. We aim to elucidate the diagnostic complexities and treatment modalities associated with chronic CIDP through a comprehensive review of a patient's clinical presentation, diagnostic work-up, and therapeutic interventions. A 70-year-old female with a complex medical history, including dermatomyositis and IgG subclass deficiency, presented with progressive lower extremity weakness and numbness. Initial workup including MRI and CT scans were inconclusive. She was diagnosed with CIDP based on electromyography (EMG)/nerve conduction studies and cerebrospinal fluid (CSF) analysis. Plasma exchange (PLEX) treatment was initiated but led to multifocal cerebral infarcts, complicating her course. Subsequent rounds of PLEX alongside dual antiplatelet therapy showed no adverse neurological events and yielded minimal to moderate improvement in her mobility. The patient was discharged to an inpatient rehabilitation center for continued care. Elevated WBCs and other abnormal lab results were monitored throughout, underscoring the need for a multidisciplinary approach in complex cases like this one. Our comprehensive overview of CIDP and its diagnostic and treatment complexities underscores the challenges clinicians face in both accurate diagnosis and effective management. The multifaceted approach - spanning history-taking, electrodiagnostic studies, and advanced imaging - highlights the necessity for a nuanced, evidence-based practice. The variability in treatment outcomes emphasizes the need for personalized medicine and continuous research to optimize therapeutic strategies. Given the inconclusive nature of some diagnostic tools and the variable treatment responses, there remains a clear need for ongoing study and long-term follow-up to further refine our understanding and management of CIDP.

17.
Cureus ; 15(10): e48001, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38034209

RESUMO

Merkel cell carcinoma (MCC) is a rare, highly aggressive neuroendocrine carcinoma of the skin. It is often found in the sun-exposed skin areas of elderly individuals of Caucasian descent. MCC has a tendency for local recurrence and the potential to invade nearby lymph nodes and spread to distant sites in the body. Here, we present the case of an 83-year-old male with a history of multiple comorbidities, including congestive heart failure, obesity, hypertension, benign prostatic hyperplasia, and sarcoidosis, who presented with a slow-growing, fungating lesion on his left lower leg. Histopathological examination revealed MCC with extensive necrosis and involved resection margins. Additional skin lesions on the left knee were confirmed to be MCC. Follow-up CT scans showed lymphadenopathy and a femoral lesion. The patient was deemed a poor candidate for resection and placed on immunotherapy treatment. The low incidence rate and indistinct clinical manifestations of MCC make a conclusive diagnosis dependent on examining histological features and immunohistochemical markers through a lesioned biopsy or resection. Due to the aggressive nature of MCC and the tendency for asymptomatic and painless lesions to escape notice, it is important to raise awareness about this condition. This will lead to earlier detection and intervention, potentially enhancing patient survival rates.

18.
Medicine (Baltimore) ; 102(40): e35307, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37800772

RESUMO

In the United States (US), pressure ulcers affect ≤3 million people and costs exceed 26.8 billion US dollars in spending. To examine trends in primary pressure ulcer (PPU) hospitalization mortality, length of hospital stay (LOS), and inflation-adjusted charges (IAC) in the US from 2005 to 2014 by race/ethnicity. We secondarily examined the relationship between race/ethnicity with PPU mortality, LOS, and IAC with race/ethnicity. This cross-sectional study used Nationwide Inpatient Sample (NIS) data from 2005 to 2014. The study sample included all hospitalizations with the designated ICD-9-CM code of 707.20-25 (pressure ulcer). There was a notable decline in PPU hospitalization from 11.5% to 7.77 % between 2005 and 2014. The mean mortality decreased from 2.32% to 1.12% (P < .001), the mean LOS declined from 9.39 days (P < .001), and the mean IAC per hospitalization decreased from $30,935 to $29,432 (P < .001). Positive changes observed in mortality, LOS, and IAC trends were consistent across different racial and ethnic groups. The results of multivariable logistic and linear regression analyses revealed that Black patients (ß = 0.68, 95% CI 0.36-1.01, P < .001) and patients belonging to the Other race/ethnic category (ß = 0.93, 95% CI 0.18-1.69) had longer hospital stays compared to their White counterparts. Regarding IAC, Black patients (ß = 2846, 95% CI 1254-4439, P < .005), Hispanic patients (ß = 6527, 95% CI 4925-8130), and patients from the Other race/ethnic category (ß = 3473, 95% CI 1771-5174) had higher IAC for PPU treatment compared to their White counterparts. PPU hospitalization discharges, as well as hospitalization mortality, LOS, and IAC, decreased during the study period, however, our findings revealed disparities in PPU outcomes among different racial/ethnic groups. Implications of the findings are discussed.


Assuntos
Úlcera por Pressão , Humanos , Negro ou Afro-Americano , Estudos Transversais , Etnicidade , Hospitalização , Úlcera por Pressão/epidemiologia , Estados Unidos/epidemiologia , Hispânico ou Latino , Brancos
19.
Plant Physiol Biochem ; 203: 108031, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37734270

RESUMO

One of the major constraints for crop yield in acidic soils is the phytotoxicity of aluminum ions (Al3+), which primarily affects the roots. To mitigate the harmful effects of Al toxicity, plants use organic acids to chelate Al internally and externally. In this study, the effects of exogenous organic acids on Al toxicity in rice, mung bean, and buckwheat were investigated. Specifically, the study examined the ameliorative effect of three organic acids (oxalic acid, malic acid, and citric acid, each at a concentration of (100 µmol/L) on root elongation, fresh weight, Al content, organic acid key enzymes, and rhizosphere pH in hydroponic media containing (100 µmol/L) Al. The experimental results revealed species-specific responses to aluminum tolerance and the alleviating effects of different organic acids. Buckwheat was found to be the most aluminum-tolerant, followed by mung bean, while rice was the least tolerant. Exogenous application of oxalic acid promoted root elongation, increased root fresh weight, and enhanced the activity of the PEPC enzyme in mung bean. Malic acid, on the other hand, alleviated Al toxicity in rice by promoting root elongation, increasing root fresh weight, enhancing the activity of the PEPC enzyme, and decreasing the activity of the MDH enzyme. In buckwheat, citric acid application reduced Al toxicity by promoting root elongation, increasing root weight, and decreasing the activities of CS and GO enzymes. These findings indicate that different organic acids can reduce Al toxicity in different plant species by employing different physiological mechanisms.

20.
Antimicrob Agents Chemother ; 67(10): e0056923, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37655889

RESUMO

Cryptosporidium is an intracellular protozoan parasite that causes serious enteric disease in humans and in a wide range of animals worldwide. Despite its high prevalence, no effective therapeutic drugs are available against life-threatening cryptosporidiosis in at-risk populations including malnourished children, immunocompromised patients, and neonatal calves. Thus, new efficacious drugs are urgently needed to treat all susceptible populations with cryptosporidiosis. Unlike other apicomplexans, Cryptosporidium parvum lacks the tricarboxylic acid cycle and the oxidative phosphorylation steps, making it solely dependent on glycolysis for metabolic energy production. We have previously reported that individual inhibitors of two unique glycolytic enzymes, the plant-like pyruvate kinase (CpPyK) and the bacterial-type lactate dehydrogenase (CpLDH), are effective against C. parvum, both in vitro and in vivo. Herein, we have derived combinations of CpPyK and CpLDH inhibitors with strong synergistic effects against the growth and survival of C. parvum, both in vitro and in an infection mouse model. In infected immunocompromised mice, compound combinations of NSC303244 + NSC158011 and NSC252172 + NSC158011 depicted enhanced efficacy against C. parvum reproduction and ameliorated intestinal lesions of cryptosporidiosis at doses fourfold lower than the total effective doses of individual compounds. Importantly, unlike individual compounds, NSC303244 + NSC158011 combination was effective in clearing the infection completely without relapse in immunocompromised mice. Collectively, our study has unveiled compound combinations that simultaneously block two essential catalytic steps for metabolic energy production in C. parvum to achieve improved efficacy against the parasite. These combinations are, therefore, lead compounds for the development of a new generation of efficacious anti-cryptosporidial drugs.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Criança , Humanos , Animais , Bovinos , Camundongos , Criptosporidiose/tratamento farmacológico , Criptosporidiose/parasitologia , Intestinos , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA